ASX RELEASE 19 January 2022

ASX: ITM

BOARD & MANAGEMENT

MINERAL

Glenn Davis - Chair Michael Schwarz - MD Gary Ferris - NED Jarek Kopias - Co Sec

CAPITAL STRUCTURE

Ordinary Shares Issued 96.1M

Options Issued 3.0M

CONTACT

Address: Level 3, 170 Greenhill Rd PARKSIDE SA 5063

Email: info@itechminerals.com.au

Website: www.itechminerals.com.au

Telephone: +61 2 5850 0000

Location – Eyre Peninsula Project, South Australia

Contact: Michael Schwarz Managing Director E: mschwarz@itechminerals.com.au Ph: +61 2 5850 0000

W: <u>www.itechminerals.com.au</u>

Or

Gavan H Farley Director - Corporate Advisory Novus Capital Mob: +61 420 520 300 Main: +61 2 9375 0114 E: gavan farley@novuscapital.com.au

EXTENSIVE EXPLORATION PROGRAM UNDERWAY AT EYRE PENINSULA KAOLIN-REE PROJECT

REE bearing high purity kaolin samples from the Ethiopia Prospect – Eyre Peninsula Project, South Australia

- Rare Earth Element (REE) lonic Clay metallurgical test work is underway at two prospects on the Eyre Peninsula Project with results expected prior to drilling
- Additional IAC REE prospect has been identified at the Bartels Prospect with intervals up to several thousand ppm TREO
- Extensive drilling campaign planned to commence in February to drill test kaolin prospects at 1) Caralue Bluff; 2) kaolin-IAC REE prospects at Ethiopia, 3) IAC REE prospects at Burtons (Salt Creek) and Bartels
- More than 370 drill holes planned, averaging 15-30m deep across the four prospects
- Drilling is expected to take 6 weeks to complete with samples submitted in batches as drilling progresses

iTech Minerals Ltd (ASX: **ITM**, **iTech** or **Company**) is pleased to give an update on exploration progress heading into the new year.

Ionic Clay Metallurgy

iTech has submitted 20 samples across two of its REE prospects at Ethiopia and Burtons (formerly Salt Creek) for metallurgical test work to determine the extent of ionic adsorption of REEs present in the clays at each prospect. Samples have been sent to the Australian Nuclear Science and Technology Organisation (ANSTO) to undertake scoping test work. The main objective is to assess the leachability of rare earths, under typical desorption conditions applied to ionic clay deposits (IAC) with results expected prior to the commencement of drilling. The samples have been selected to represent different levels within the weathering profile spatial distributed across the prospects. This will help iTech understand to what degree ionic adsorption plays a role in the REE mineralisation at each prospect and how it may vary within the system.

Drilling Progress

The Company has been busy contacting landowners on its Eyre Peninsula tenements, post-harvest, to obtain permission to access the land for drilling. Access to all prospects has now been granted and a drill rig secured to commence drilling next month. Over 370 drill holes are planned to be drilled across four prospects on the central Eyre Peninsula, targeting both kaolin (kaolin-halloysite and HPA) and kaolin-IAC REE styles of mineralisation.

"iTech is excited to be embarking on such a substantial drilling program across numerous prospects. The metallurgical test work to determine the degree of ionic clay rare earth element mineralisation, will focus the drilling on the best areas for both IAC and kaolin development."

Managing Director Mike Schwarz

To watch an explanation video please click the link below

Exploration Video Explainer

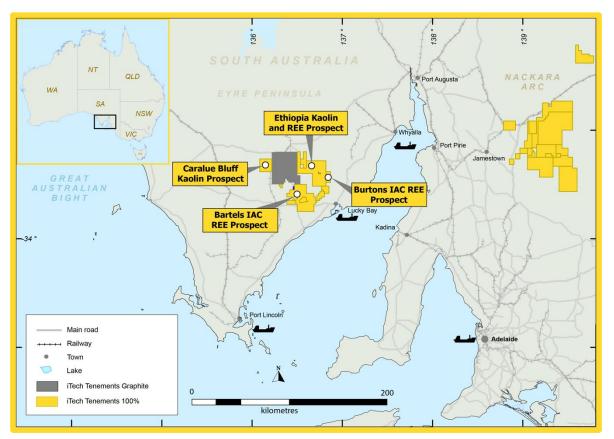


Figure 1. Location of the Ethiopia Prospect – Eyre Peninsula, South Australia

Bartels IAC REE Prospect

iTech has identified a new zone of REE mineralisation in a weathered, clay rich horizon at the Bartels Prospect, in the southernmost part of the Eyre Peninsula tenement package (Fig. 1). In 2012, Archer Materials drilled 3 reverse circulation drill holes targeting gold mineralisation in epithermal systems. One drill hole, EPIRC12_003, intersected significant rare earth elements in what is described as kaolinised coarse grained felsic, this hole was drilled in an attempt to identify strike extensions to gold mineralisation.

- EPIRC12_003 intersected 21m @ 2298 ppm TREO from 55-76m
 - including 9 m @ 3054 ppm TREO from 55-56m
 - o and 7 m @ 2626 ppm TREO from 69-76m

EPIRC12_001 and EPIRC12_002 intersected alteration and significant gold mineralisation but didn't intersect the kaolinitic felsic unit identified in EPIRC12_003.

Due to the depth of the mineralisation, there is some question as to whether it could be ionic in nature. The mineralised interval appears to be a preferentially weathered zone of felsic intrusive within layered metasediments of the Hutchison Group Metasediments. A review of the chip trays from the drilling does suggest that the influence of lateritic weathering extends well below the mineralised horizon, potentially preferentially weathering certain units. More importantly weathered equivalents of the felsic outcrop extensively in the vicinity of the drill hole and provide a significant IAC REE target in the upcoming drilling program.

iTech intends to drill approximately 50 drill holes across an area of approximately 4km x 2km (Fig. 2) to test this target.

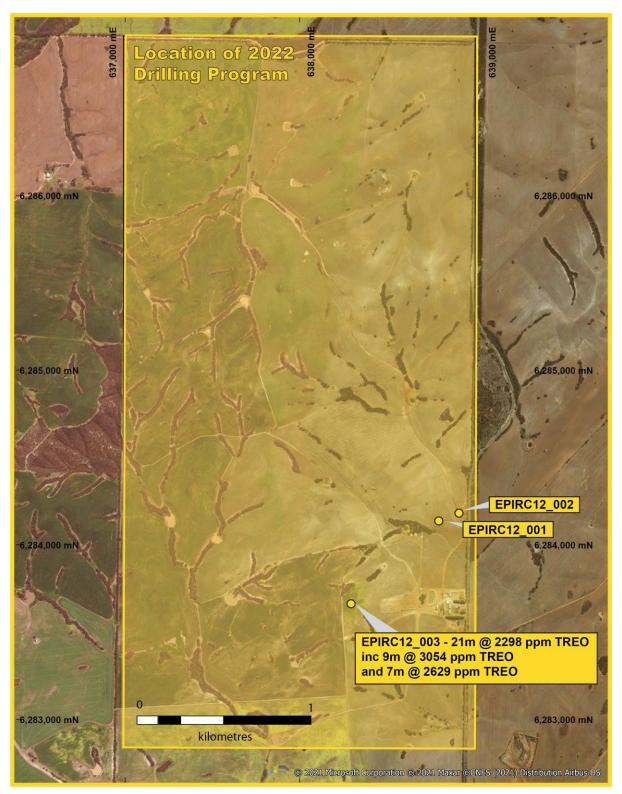


Figure 2. Location of the Bartels IAC REE Prospect and proposed drilling area – Eyre Peninsula, South Australia

Ethiopia Kaolin – IAC REE Prospect

Having identified extensive enrichment of REE's in kaolinitic clays, across an area in excess of 1.3 km x 1 km, at the Ethiopia Prospect, iTech plans to drill approximately 65 additional holes. The program is designed to infill and extend the mineralisation to an area of approximately 2.5 km x 1.5 km with a focus on extending high grade mineralisation at the end of historical drilling in ETH-029 which intersected 32m @ 1633 ppm TREO (<45 μ m).

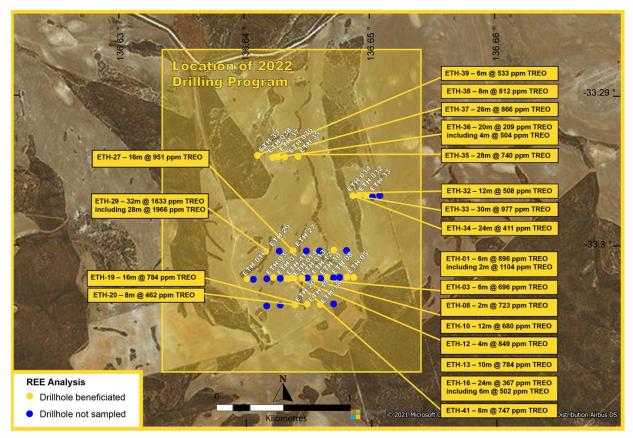


Figure 3. Location of the Ethiopia Kaolin IAC-REE Prospect and proposed drilling area – Eyre Peninsula, South Australia

Burtons (Salt Creek) IAC REE Prospect

iTech has identified significant rare earth element mineralisation in the clay rich, weathering profile at the Burtons Prospect on the Eyre Peninsula, South Australia (Fig. 1). The rare earths display significant enrichment of neodymium and praesidium (~23% Nd+Pr), which are critical in the production of permanent magnets for electric vehicles and renewable energy. They also display significant enrichment in desirable heavy rare earth element oxides (~39% HREO) which command a premium price. A detailed review of historical data, from drilling undertaken by Archer Materials Ltd in 2011, identified thick intervals of up to 32m of REE rich, clay dominant material, over an area extending over 1 km in a north-south direction (Fig. 4). Of the 19 drill holes, 15 holes had high levels of REE mineralisation consistent with ion adsorption clay (IAC) style mineralisation. The results show thick intervals of clay rich material near surface with high levels of total rare earth element oxides. Representative samples from Burtons Prospect are being sent to the ANSTO laboratories in Sydney where they specialise in the metallurgical extraction of REE from IAC deposits. The results will give an indication of expected recoveries and whether ionic adsorption plays a significant role in the REE mineralisation style. iTech plans to drill approximately 64 holes at the Burtons Prospect over an area of 12km x 3km to test the full extent of the clay hosted REE mineralisation.

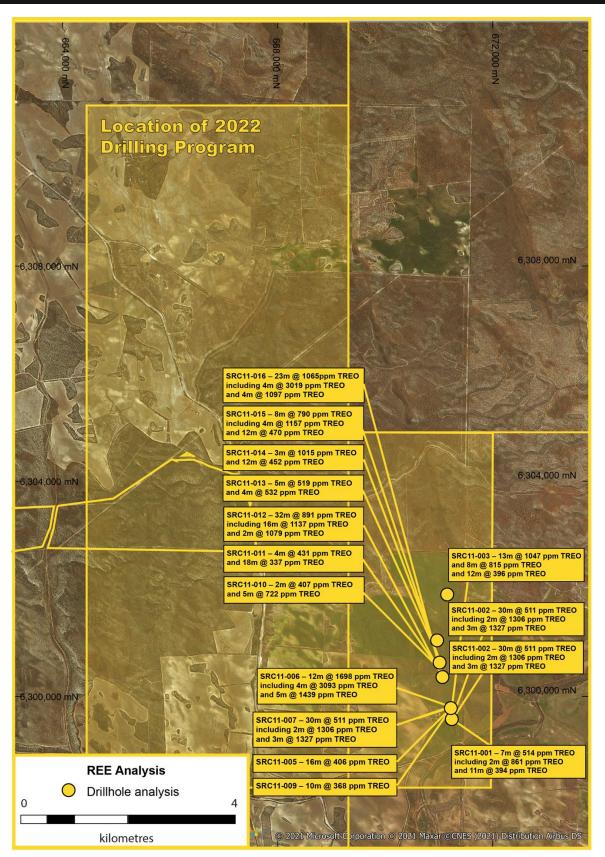


Figure 4. Location of the Burtons (Salt Creek) Prospect and proposed drilling area – Eyre Peninsula, South Australia

Caralue Bluff Kaolin Prospect

The Caralue Bluff Prospect has bright white kaolin confirmed in drilling at <10m depth, up to 17m thick, in two drill holes over 5 km apart. Historical partial chemical and mineralogical analyses of the bulk raw clay from one drill hole recorded relative high kaolinite content (~70%) with total Fe₂O₃ of 0.55% and raw brightness of 87% according to the TAPPI 646m-54 standard. The high purity and brightness of this material makes it well suited to high purity alumina feedstock, paper coating and filler applications (*ASX Release, Replacement Prospectus, 19 October 2021*). The Company has an extensive drilling program planned to cover an area of 12 km x 12km for a total of approximately 194 holes. In addition to the two drill holes that intersect bright white kaolin, numerous dams and council rubble pits in the region reveal white kaolin exposed at surface over.

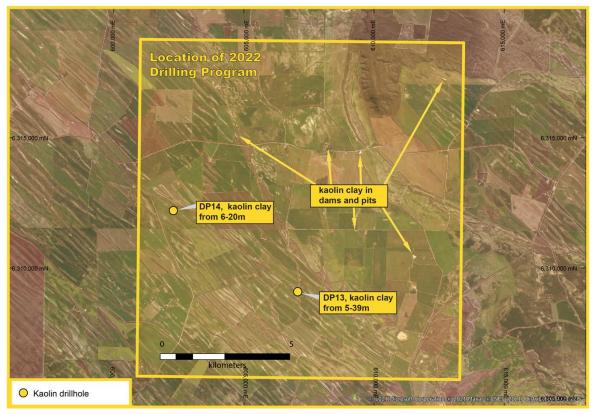


Figure 4. Location of the Caralue Bluff Kaolin Prospect and proposed drilling area – Eyre Peninsula, South Australia

Prospect	Target	Best Results	Drillholes
Ethiopia	Kaolin - IAC REE	32m @ 1038 ppm TREO	65
Burtons (Salt Creek)	IAC REE	12m @ 1698 ppm TREO	64
Caralue Bluff	Kaolin	Bright white kaolin in historical holes over 5 km	194
Bartels	IAC REE	21m @ 2298 ppm TREO	49
		Total (approx)	372

Table 1. Eyre Peninsula Kaolin-REE Prospect summary with proposed drilling programs

For further information please contact the authorising officer Michael Schwarz:

Michael Schwarz, FAusIMM, AIG Managing Director E: <u>mschwarz@itechminerals.com.au</u> Ph: +61 2 5850 0000 W: <u>www.itechminerals.com.au</u>

Or

Gavan H Farley Director - Corporate Advisory Novus Capital Mob: +61 420 520 300 Main: +61 2 9375 0114 E: gavan.farley@novuscapital.com.au

ABOUT ITECH MINERALS LTD

iTech Minerals Ltd is a newly listed mineral exploration company exploring for and developing battery materials and critical minerals within its 100% owned Australian projects. The company is exploring for kaolinite-halloysite, ion adsorption clay rare earth element mineralisation and developing the Campoona Graphite Deposit in South Australia. The company also has extensive exploration tenure prospective for Cu-Au porphyry mineralisation, IOCG mineralisation and gold mineralisation in South Australia and tin, Tungsten, and polymetallic Cobar style mineralisation in New South Wales.

COMPETENT PERSON STATEMENT

The information which relates to exploration results is based on and fairly represents information and supporting documentation compiled by Michael Schwarz. Mr Schwarz has sufficient experience, which is relevant to the style of mineralisation and type of deposit under consideration and to the activity which he is undertaking, to qualify as a Competent Person as defined in the 2012 edition of the 'Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves' (the JORC Code). Mr Schwarz is a full-time employee of iTech Minerals Ltd and is a member of the Australian Institute of Geoscientists and the Australian Institute of Mining and Metallurgy. Mr Schwarz consents to the inclusion of the information in this report in the form and context in which it appears.

This announcement contains results that have previously released as "Replacement Prospectus" on 19 October 2021, "Rare Earth Potential Identified at Kaolin Project" on 21 October 2021, "Rare Earth Potential Confirmed at Kaolin Project" on 12 November 2021, "New Rare Earth Prospect on the Eyre Peninsula" on 29 November 2021, "Positive Results Grow Rare Earth Potential at Kaolin Project" on 13 December 2021 and "More Positive Rare Earth Results - Ethiopia Kaolin Project" on 12 January 2022. iTech confirms that the Company is not aware of any new information or data that materially affects the information included in the announcement.

GLOSSARY

CREO = Critical Rare Earth Element Oxide HREO = Heavy Rare Earth Element Oxide IAC = Ion Adsorption Clay LREO = Light Rare Earth Element Oxide REE = Rare Earth Element REO = Rare Earth Element Oxide TREO = Total Rare Earth Element Oxides %NdPr = Percentage amount of neodymium and praesidium as a proportion of the total amount of rare earth elements

APPENDIX 1 – DETAILED TECHNICAL INFORMATION AND JORC TABLE 1

Hole Id	Easting	Northing	Depth	RL (m)	Dip	Azimuth
EPIRC12_001	638798	6284138	109	300	-70	340

Table 2. Collar details of Bartels drill hole EPIRC12_001

Hole_ID	From (m)	To (m)	Interval (m)	Sc₂O₃ (ppm)	ThO₂ (ppm)	U ₃ O ₈ (ppm)	TREO (ppm)	TREO- CeO ₂ (ppm)	LREO (ppm)	HREO (ppm)	CREO (ppm)	NdPr (%)	%LREO	%HREO
EPIRC12-003	55	76	21	33	36	27	2298	1298	2028	270	620	26%	85%	15%
incl	55	64	9	27	35	35	3054	1718	2696	358	830	27%	85%	15%
and	69	76	7	36	35	13	2629	1486	2344	285	695	27%	88%	12%

Table 3. REE interval from drill hole EPIRC12_001

Hole Id	From	То	CeO ₂ (ppm)	La ₂ O ₃ (ppm)	Dy ₂ O ₃ (ppm)	Er ₂ O ₃ (ppm)	Eu ₂ O ₃ (ppm)	Gd ₂ O ₃ (ppm)	Ho ₂ O ₃ (ppm)	Lu ₂ O ₃ (ppm)	Nd ₂ O ₃ (ppm)	Pr ₆ O ₁₁ (ppm)	Sm ₂ O ₃ (ppm)	Tb₄O ₇ (ppm)	Tm ₂ O ₃ (ppm)	Yb ₂ O ₃ (ppm)	Y ₂ O ₃ (ppm)	Sc ₂ O ₃ (ppm)	ThO ₂ (ppm)	U₃O₅ (ppm)	TREO (ppm)	TREO- CeO ₂	LREO (ppm)	HREO (ppm)	CREO (ppm)	NdPr (%)	% LREO	% HREO
				 /	ur /	ur /	ur /	ur /	ur /		ur /	ur /			ur /	ur /	ur /		ur /	ur /	ur /	(ppm)	ur /	ur /	ur /			
Detection Limit			1	1	0.5	1	0.5	1	1	0.5	0.5	1	0.5	0.5	1	1	1	1	1	1								
EPIRC12_003	1	2	25	13	0.9	1	0.2	1	0	0.1	7.3	2	1.2	0.2	0	1	6	15	30	3	58	34	47	11	15	17%	80%	20%
EPIRC12_003	2	3	29	17	0.7	0	0.2	1	0	0.1	7.9	3	1.3	0.1	0	1	5	13	20	2	65	36	56	9	14	16%	86%	14%
EPIRC12_003	3	4	17	10	0.7	1	0.2	1	0	0.1	5.1	2	0.9	0.1	0	1	5	11	22	4	43	26	33	9	11	16%	78%	22%
EPIRC12_003	4	5	14	8	0.6	0	0.1	1	0	0.1	4.1	1	0.8	0.1	0	0	4	13	24	4	34	21	27	8	9	16%	78%	22%
EPIRC12_003	5	6	35	19	1.0	1	0.3	1	0	0.1	11.0	3	1.8	0.2	0	1	6	16	31	4	80	45	68	12	18	18%	85%	15%
EPIRC12_003	6	7	115	52	2.4	2	0.6	3	0	0.3	37.6	12	5.6	0.5	0	1	16	20	42	5	248	133	216	32	57	20%	87%	13%
EPIRC12_003	7	8	39	18	1.4	1	0.4	2	0	0.1	12.8	4	2.2	0.2	0	1	9	10	22	3	91	52	74	17	24	18%	81%	19%
EPIRC12_003	8	9	37	17	1.3	1	0.3	2	0	0.1	12.1	4	2.2	0.2	0	1	9	10	24	3	86	49	70	16	23	18%	81%	19%
EPIRC12_003	9	10	58	29	2.0	1	0.6	2	0	0.2	21.1	6	3.7	0.4	0	1	12	17	37	5	138	80	114	24	36	20%	83%	17%
EPIRC12_003	10	11	78	37	1.9	1	0.6	3	0	0.2	26.7	8	4.3	0.4	0	1	12	15	37	4	175	97	149	25	42	20%	86%	14%
EPIRC12_003	11	12	44	23	1.5	1	0.5	2	0	0.2	16.6	5	2.9	0.3	0	1	10	14	27	4	108	64	89	19	29	20%	82%	18%
EPIRC12_003	12	13	39	18	1.6	1	0.5	2	0	0.2	14.1	4	2.7	0.3	0	1	10	15	40	5	94	56	75	20	27	19%	79%	21%
EPIRC12_003	13	14	65	30	2.7	1	0.8	3	1	0.2	25.2	7	4.5	0.5	0	1	16	14	91	6	159	94	128	32	46	20%	80%	20%
EPIRC12_003	14	15	72	34	2.2	1	0.8	3	0	0.2	27.5	8	4.7	0.5	0	1	12	19	36	7	169	97	143	27	43	21%	84%	16%
EPIRC12_003	15	16	72	34	2.0	1	0.7	3	0	0.1	28.2	9	4.7	0.4	0	1	11	14	26	4	168	95	143	24	43	22%	86%	14%
EPIRC12_003	16	17	105	48	2.7	1	1.3	4	1	0.2	40.4	12	6.6	0.6	0	1	16	24	37	9	240	135	205	35	61	22%	86%	14%
EPIRC12_003	17	18	106	47	2.8	1	1.2	4	1	0.3	39.9	12	6.5	0.6	0	1	16	30	33	9	239	134	204	35	61	22%	85%	15%
EPIRC12_003	18	19	97	44	2.8	1	1.2	4	1	0.3	37.0	11	6.2	0.6	0	1	17	25	40	9	224	127	189	35	58	21%	84%	16%
EPIRC12_003	19	20	86	40	2.8	2	1.2	4	1	0.3	33.0	10	5.7	0.6	0	1	17	31	42	9	204	118	169	35	54	21%	83%	17%
EPIRC12_003	20	21	69	29	2.2	1	0.7	3	0	0.2	23.7	7	4.3	0.4	0	1	12	19	28	5	154	85	129	26	39	20%	83%	17%
EPIRC12_003	21	22	69	29	2.2	1	0.7	3	0	0.2	23.7	7	4.3	0.4	0	1	12	19	28	5	154	85	129	26	39	20%	83%	17%
EPIRC12_003	22	23	69	29	2.2	1	0.7	3	0	0.2	23.7	7	4.3	0.4	0	1	12	19	28	5	154	85	129	26	39	20%	83%	17%
EPIRC12_003	23	24	69	29	2.2	1	0.7	3	0	0.2	23.7	7	4.3	0.4	0	1	12	19	28	5	154	85	129	26	39	20%	83%	17%
EPIRC12_003	24	25	49	25	1.9	1	0.7	2	0	0.3	15.5	5	2.9	0.3	0	2	13	12	19	3	119	70	95	25	31	17%	79%	21%
EPIRC12_003	25	26	49	25	1.9	1	0.7	2	0	0.3	15.5	5	2.9	0.3	0	2	13	12	19	3	119	70	95	25	31	17%	79%	21%
EPIRC12_003	26	27	49	25	1.9	1	0.7	2	0	0.3	15.5	5	2.9	0.3	0	2	13	12	19	3	119	70	95	25	31	17%	79%	21%
EPIRC12_003	27	28	49	25	1.9	1	0.7	2	0	0.3	15.5	5	2.9	0.3	0	2	13	12	19	3	119	70	95	25	31	17%	79%	21%
EPIRC12_003	28	29	49	26	1.8	1	0.7	2	0	0.3	15.2	5	2.6	0.3	0	2	11	8	16	3	117	68	95	22	29	17%	81%	19%
EPIRC12_003	29	30	49	26	1.8	1	0.7	2	0	0.3	15.2	5	2.6	0.3	0	2	11	8	16	3	117	68	95	22	29	17%	81%	19%
EPIRC12_003	30	31	49	26	1.8	1	0.7	2	0	0.3	15.2	5	2.6	0.3	0	2	11	8	16	3	117	68	95	22	29	17%	81%	19%

ASX RELEASE

19 January 2022

19 January 2022

Hole Id	From	То	CeO₂ (ppm)	La₂O₃ (ppm)	Dy ₂ O ₃ (ppm)	Er ₂ O ₃ (ppm)	Eu ₂ O ₃ (ppm)	Gd ₂ O ₃ (ppm)	Ho ₂ O ₃ (ppm)	Lu ₂ O ₃ (ppm)	Nd ₂ O ₃ (ppm)	Pr ₆ O ₁₁ (ppm)	Sm ₂ O ₃ (ppm)	Tb₄O₂ (ppm)	Tm ₂ O ₃ (ppm)	Yb ₂ O ₃ (ppm)	Y ₂ O ₃ (ppm)	Sc ₂ O ₃ (ppm)	ThO₂ (ppm)	U₃O₅ (ppm)	TREO (ppm)	TREO- CeO ₂	LREO (ppm)	HREO (ppm)	CREO (ppm)	NdPr (%)	% LREO	% HREO
Detection Limit			1	1	0.5	1	0.5	1	1	0.5	0.5	1	0.5	0.5	1	1	1	1	1	1		(ppm)						
EPIRC12 003	31	32	49	26	1.8	. 1	0.7	2	. 0	0.3	15.2	. 5	2.6	0.3	. 0	2	11	. 8	16	. 3	117	68	95	22	29	17%	81%	19%
EPIRC12_003	32	33	82	37	2.4	1	0.7	3	0	0.3	28.5	8	4.9	0.5	0	2	14	16	25	5	186	104	157	30	46	20%	84%	16%
EPIRC12_003	33	34	82	37	2.4	1	0.7	3	0	0.3	28.5	8	4.9	0.5	0	2	14	16	25	5	186	104	157	30	46	20%	84%	16%
EPIRC12_003	34	35	82	37	2.4	1	0.7	3	0	0.3	28.5	8	4.9	0.5	0	2	14	16	25	5	186	104	157	30	46	20%	84%	16%
EPIRC12_003 EPIRC12_003	35 36	36 37	82 65	37 28	2.4	1	0.7	3	0	0.3	28.5 24.1	8	4.9 4.3	0.5	0	2	14 11	16 13	25 28	5	186 149	104 83	157 124	30 25	46 39	20% 21%	84% 83%	16% 17%
EPIRC12_003 EPIRC12_003	36	37	65	28	2.1	1	0.7	3	0	0.2	24.1	7	4.3	0.4	0	1	11	13	28	4	149	83	124	25	39	21%	83%	17%
EPIRC12_003	38	39	65	28	2.1	1	0.7	3	0	0.2	24.1	7	4.3	0.4	0	1	11	13	28	4	143	83	124	25	39	21%	83%	17%
EPIRC12_003	39	40	65	28	2.1	1	0.7	3	0	0.2	24.1	7	4.3	0.4	0	1	11	13	28	4	149	83	124	25	39	21%	83%	17%
EPIRC12_003	40	41	53	27	1.5	1	0.6	2	0	0.1	20.1	6	3.4	0.3	0	1	9	13	26	2	125	72	106	19	31	21%	85%	15%
EPIRC12_003	41	42	73	36	2.5	1	0.9	3	0	0.3	28.5	9	4.8	0.5	0	1	17	20	41	4	179	105	146	33	49	21%	82%	18%
EPIRC12_003	42	43	58	29	2.1	1	0.7	3	0	0.2	22.7	7	4.0	0.4	0	1	14	16	30	4	143	85	116	27	40	21%	81%	19%
EPIRC12_003 EPIRC12_003	43 44	44 45	85	37	2.6	1	1.0	3	0	0.2	32.1 30.9	10 9	5.4 5.0	0.5	0	1	16	21	36 30	5	195	111	163	32 29	52 48	22%	84%	16%
EPIRC12_003	44	45	78 98	36 43	3.0	2	1.1	4	1	0.2	30.9	11	6.4	0.5	0	1	14 18	25 25	30	6	184 228	106 130	155 191	37	61	22% 22%	84% 84%	16% 16%
EPIRC12_003	46	40	132	58	5.2	3	1.0	7	1	0.2	57.5	17	10.2	1.1	0	2	30	31	45	6	325	193	264	61	95	23%	81%	19%
EPIRC12_003	47	48	146	67	4.7	2	1.6	6	1	0.4	58.2	17	9.9	1.0	0	2	28	39	42	5	347	201	289	58	94	22%	83%	17%
EPIRC12_003	48	49	146	68	4.8	2	1.6	7	1	0.3	57.9	17	10.2	1.0	0	2	28	38	35	6	346	201	289	58	93	22%	83%	17%
EPIRC12_003	49	50	146	75	5.0	2	1.7	7	1	0.3	57.7	17	10.0	1.0	0	2	30	33	39	7	356	211	295	61	95	21%	83%	17%
EPIRC12_003	50	51	121	58	5.0	3	1.6	7	1	0.4	51.4	15	9.2	1.0	0	2	30	33	37	7	305	184	245	60	89	22%	80%	20%
EPIRC12_003	51	52	146	68	5.5	3	1.8	7	1	0.4	59.6	17	10.6	1.1	0	2	32	49	39	16	356	210	291	65	100	22%	82%	18%
EPIRC12_003 EPIRC12_003	52 53	53 54	118 135	56 68	4.6	3	1.4 1.4	6	1	0.4	49.0 52.6	14 16	8.7 9.1	1.0 1.0	0	2	28 29	36 48	32 31	14 18	293 329	175 194	237 271	56 58	84 89	22% 21%	81% 82%	19% 18%
EPIRC12_003 EPIRC12_003	53	55	247	101	4.7	4	2.3	11	1	0.4	96.5	28	9.1	1.0	1	4	46	48	50	18	329 569	322	472		155	21%	82%	18%
EPIRC12_003	55	56	4791	1443	67.6	18	41.8	134	9	1.7	2134.5	623	339.8	16.9	2	14	194	31	37	43	9830	5040	8991	839	2455	28%	91%	9%
EPIRC12 003	56	57	2334	962	57.3	16	30.0	107	8	1.5	1271.4	353	215.1	13.4	2	13	178	29	33	86	5560	3226	4920	640	1550	29%	88%	12%
EPIRC12_003	57	58	1106	509	35.0	11	17.3	63	5	1.2	683.5	188	124.7	8.4	1	10	122	28	41	95	2885	1779	2486	399	867	30%	86%	14%
EPIRC12_003	58	59	501	214	18.2	7	7.1	30	3	0.8	236.8	62	48.5	4.0	1	6	72	18	33	35	1211	710	1014	197	338	25%	84%	16%
EPIRC12_003	59	60	253	118	14.7	6	4.6	22	2	0.7	124.8	31	27.3	3.1	1	5	64	19	32	8	678	425	527	151	212	23%	78%	22%
EPIRC12_003	60	61	235	103	13.6	5	5.1	22	2	0.7	128.3	30	29.9	3.0	1	5	54	21	31	11	638	403	497	141	204	25%	78%	22%
EPIRC12_003 EPIRC12_003	61 62	62 63	474 1351	203 563	17.7 35.5	7	7.2	29 65	3	0.8	225.7 744.2	59 208	47.9	3.9 8.4	1	6	73 120	22	34 33	10 9	1159 3279	685 1928	963 2866	197 413	328 927	25% 29%	83% 87%	17% 13%
EPIRC12_003	63	64	983	402	19.9	7	9.5	34	3	0.9	472.4	144	76.3	4.4	1	7	83	41	39	21	2247	1920	2000	246	589	23%	89%	11%
EPIRC12_003	64	65	211	89	7.7	4	2.1	10	1	0.5	86.2	24	15.2	1.5	1	4	43	36	33	15	500	289	411	90	141	22%	82%	18%
EPIRC12_003	65	66	181	77	7.9	4	2.1	10	1	0.5	77.4	21	14.3	1.5	1	3	43	36	37	27	445	264	356	88	132	22%	80%	20%
EPIRC12_003	66	67	192	80	7.7	4	2.3	10	1	0.4	81.2	22	14.7	1.5	0	3	42	39	43	41	462	270	375	87	134	22%	81%	19%
EPIRC12_003	67	68	224	97	9.3	4	2.6	12	2	0.5	93.2	26	17.2	1.8	1	4	51	47	47	41	546	321	441	105	158	22%	81%	19%
EPIRC12_003	68	69	173	75	7.4	4	2.0	9	1	0.5	72.7	20	13.2	1.4	1	3	43	45	37	34	426	253	340	86	126	22%	80%	20%
EPIRC12_003 EPIRC12_003	69 70	70	614 1843	278	11.9 24.8	5	5.6 16.6	19 48	2	0.6	288.1 884.1	87 272	44.6 131.0	2.6	1	5	57 92	51 48	39 35	19 13	1421 4101	807 2258	1267 3761	154 340	365 1024	26% 28%	89% 92%	11%
EPIRC12_003 EPIRC12_003	70	72	2211	809	24.8	11	21.5	48	4	1.2	1029.9	301	163.5	8.4	1	10	123	48	35	13	4101	2258	4351	340 445	1024	28%	92%	8% 9%
EPIRC12_003	72	73	983	490	24.0	8	12.7	43	4	1.2	571.5	166	93.8	5.6	1	7	94	29	35	13	2506	1523	2211	296	708	20%	88%	12%
EPIRC12_003	73	74	983	430	25.8	9	11.8	43	4	1.0	495.7	143	85.5	5.8	1	8	110	38	33	13	2349	1366	2043	306	649	27%	87%	13%
EPIRC12_003	74	75	860	347	25.2	9	11.7	43	4	1.0	447.9	124	80.6	5.7	1	8	100	29	32	13	2069	1209	1779	289	590	28%	86%	14%
EPIRC12_003	75	76	507	209	14.4	6	6.0	24	2	0.7	218.7	59	40.6	3.2	1	5	65	20	33	11	1161	654	994	168	307	24%	86%	14%
EPIRC12_003	76	77	249	109	8.7	4	3.0	12	2	0.5	106.0	29	19.1	1.8	1	4	46	13	29	6	595	346	494	102	166	23%	83%	17%
EPIRC12_003	77	78	200	89	6.9	3	2.2	10	1	0.5	78.7	22	14.0	1.4	0	3	41	15	31	5	473	274	389	84	130	21%	82%	18%
EPIRC12_003 EPIRC12_003	78 79	79 80	165 238	72	5.4 8.1	3	1.8 2.6	7	1	0.4	66.6 95.2	19 26	11.5 16.8	1.1 1.6	0	3	33 51	9	25 33	6	390 562	226 325	322 460	68 102	108 159	22% 22%	83% 82%	17% 18%
EPIRC12_003 EPIRC12_003	80	81	155	67	6.0	4	1.8	8	1	0.6	63.3	18	11.3	1.0	0	3	37	10	27	8	377	222	303	74	110	22%	80%	20%
EPIRC12_003	81	82	162	71	6.8	4	1.8	9	1	0.4	65.3	18	12.1	1.3	0	3	41	10	30	14	398	236	317	81	110	21%	80%	20%
EPIRC12_003	82	83	208	90	9.9	5	2.8	12	2	0.7	84.4	23	16.2	1.8	1	5	61	42	23	20	522	315	405	117	160	21%	78%	22%
EPIRC12_003	83	84	265	115	10.7	5	3.2	14	2	0.7	111.2	30	19.8	2.1	1	5	64	35	30	12	649	384	522	127	191	22%	80%	20%
EPIRC12_003	84	85	187	81	6.7	3	2.0	9	1	0.5	72.2	20	12.7	1.3	0	3	42	13	31	8	443	256	360	82	124	21%	81%	19%
EPIRC12_003	85	86	157	64	8.6	5	2.2	10	2	0.6	68.6	18	13.2	1.6	1	4	50	26	32	13	406	249	309	98	131	21%	76%	24%
EPIRC12_003 EPIRC12_003	86 87	87 88	147 123	70 58	8.0 9.5	4	2.1	10	2	0.5	61.6 61.8	17 16	11.5 12.3	1.5 1.6	1	4	53 58	23	26	11	392 366	244 243	296 258	96 108	126 134	20%	75% 71%	25% 29%
EPIRC12_003 EPIRC12_003	88	89	123	58	9.5	5	2.3	8	2	0.6	50.4	18	9.8	1.6	1	4	58	23	26 20	14 12	300	243	208	91	134	21% 20%	71%	29%
EPIRC12_003	89	90	83	35	6.0	4	1.0	7	1	0.0	39.4	10	8.0	1.0	0	3	39	23	19	12	240	157	168	72	87	20%	70%	30%
2111012_000			00	00	0.0		1.0			0.0		10	0.0	1.0	· ·	· · ·	00	~~~	10	14	240	101	100	12		- 170	.070	0070

ASX RELEASE

19 January 2022

ASX: ITM

Hole Id	From	То	CeO₂ (ppm)	La ₂ O ₃ (ppm)	Dy₂O₃ (ppm)	Er ₂ O ₃ (ppm)	Eu ₂ O ₃ (ppm)	Gd₂O₃ (ppm)	Ho ₂ O ₃ (ppm)	Lu ₂ O ₃ (ppm)	Nd ₂ O ₃ (ppm)	Pr₀O₁₁ (ppm)	Sm₂O₃ (ppm)	Tb₄Oァ (ppm)	Tm₂O₃ (ppm)	Yb ₂ O ₃ (ppm)	Y ₂ O ₃ (ppm)	Sc ₂ O ₃ (ppm)	ThO₂ (ppm)	U ₃ O ₈ (ppm)	TREO (ppm)	TREO- CeO₂ (ppm)	LREO (ppm)	HREO (ppm)	CREO (ppm)	NdPr (%)	% LREO	% HREO
Detection Limit			1	1	0.5	1	0.5	1	1	0.5	0.5	1	0.5	0.5	1	1	1	1	1	1								
EPIRC12_003	90	91	94	41	4.9	3	1.2	6	1	0.4	40.5	11	7.6	0.8	0	3	33	21	27	12	248	154	187	61	81	21%	75%	25%
EPIRC12_003	91	92	91	42	6.1	4	1.4	7	1	0.5	39.7	11	7.7	1.0	1	4	44	26	27	16	260	169	184	76	92	19%	71%	29%
EPIRC12_003	92	93	121	70	13.7	10	2.9	14	3	1.3	57.9	14	12.4	2.0	1	9	124	18	13	32	457	335	263	193	200	16%	58%	42%
EPIRC12_003	93	94	103	53	8.1	5	1.9	9	2	0.7	44.3	12	8.8	1.3	1	5	61	31	19	16	316	212	213	103	117	18%	67%	33%
EPIRC12_003	94	95	82	40	6.0	4	1.4	7	1	0.5	35.6	10	7.0	1.0	1	3	42	29	23	14	241	159	167	74	86	19%	69%	31%
EPIRC12_003	95	96	89	45	6.2	4	1.5	7	1	0.5	38.6	10	7.4	1.0	0	3	44	25	16	17	259	170	184	76	91	19%	71%	29%
EPIRC12_003	96	97	92	46	6.3	4	1.5	7	1	0.6	38.4	11	7.4	1.0	1	4	47	29	22	18	267	176	187	81	95	18%	70%	30%
EPIRC12_003	97	98	87	41	6.3	4	1.5	7	1	0.5	36.9	10	7.5	1.0	1	3	43	26	20	17	250	164	175	76	89	19%	70%	30%
EPIRC12_003	98	99	73	34	4.7	3	1.2	5	1	0.4	30.0	8	5.8	0.8	0	3	32	37	15	10	203	130	145	57	69	19%	72%	28%
EPIRC12_003	99	100	54	22	5.0	3	1.2	5	1	0.5	25.0	7	5.3	0.8	0	3	26	37	14	6	159	105	108	51	58	20%	68%	32%
EPIRC12_003	100	101	117	57	6.0	3	1.8	7	1	0.5	47.5	13	8.7	1.0	0	3	40	33	23	6	309	191	236	73	96	20%	76%	24%
EPIRC12_003	101	102	50	22	5.3	3	1.2	6	1	0.5	24.3	6	5.6	0.9	0	3	32	36	12	16	161	111	102	58	63	19%	64%	36%
EPIRC12_003	102	103	85	42	6.1	4	1.4	7	1	0.5	35.7	10	7.1	1.0	0	3	42	33	25	17	245	160	172	73	86	19%	70%	30%
EPIRC12_003	103	104	170	81	8.3	5	2.3	10	2	0.6	70.0	20	12.9	1.5	1	4	55	28	28	16	442	272	340	102	137	20%	77%	23%
EPIRC12 003	104	105	101	52	8.2	5	1.9		2	0.7	44.8	12	9.0	1.4	1	4	55	44	18	11	297	196	210	87	111	19%	71%	29%

Table 4. Complete REE analyses from drill hole EPIRC12_001

JORC 2012 EDITION - TABLE 1

Section 1 Sampling Techniques and Data

(Criteria in this section apply to all succeeding sections.)

Criteria	JORC Code Explanation	Commentary
Sampling Techniques	 Nature and quality of sampling (e.g. cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as downhole gamma sondes, or handheld XRF instruments, etc.). These examples should not be taken as limiting the broad meaning of sampling. Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used. Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (e.g. 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases, more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (e.g. submarine nodules) may warrant disclosure of detailed information. 	 Archer Materials Ltd The Bartel Epithermal deposit was sampled by reverse circulation (RC) holes. Sampling is guided by Archer's protocols and QA/QC procedures RC samples are collected by a riffle splitter using a face sampling hammer diameter approximately 140 mm. Samples average 2kg in size and are uniquely numbered for reference. All samples were sent ALS laboratory in Adelaide for preparation and forwarded to Perth for gold and multielement analyses. All samples are crushed using LM2 mill to -4 mm and pulverised to nominal 80% passing -75 µm. Gold is by fire assay, solvent extraction and AAS. A charge of 30 g nominal weight is used. Multi-element analyses were performed by ALS in Perth where; Sample Decomposition: was by HF-HNO₃-HClO₄ acid digestion, HCl leach (GEO-4A01) Analytical Method: using Inductively Coupled Plasma - Atomic Emission Spectroscopy (ICP - AES) Inductively Coupled Plasma - Mass Spectrometry (ICP-MS) Wet samples were speared from the cyclone bag after water had dispersed.
Drilling Techniques	 Drill type (e.g., core, reverse circulation, open hole hammer, rotary air blast, auger, Bangka, sonic, etc.) and details (e.g. core diameter, triple or standard tube, depth of diamond tails, face-sampling bit or other type, whether core is oriented and if so, by what method, etc.). 	 Archer Materials Bartels RC hole EPIRC12_001 to 003, was drilled by Lehmanns Drilling company using a standard RC Percussion rig. All holes were drilled using a small diameter percussion hammer run on RAB rods and in effect the drill method can be considered as open hole percussion. The Competent Person has referenced publicly sourced information through the report and considers that drilling techniques was

ASX RELEASE 19 January 2022

Criteria	JORC Code Explanation	Commentary
		commensurate with industry standards current at the time of drilling and is appropriate for the indication of the presence of mineralisation.
Drill Sample Recovery	 Method of recording and assessing core and chip sample recoveries and results assessed. Measures taken to maximise sample recovery and ensure representative nature of the samples. Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material. 	 Archer Materials Ltd A 25% fraction of samples in the Bartel area returned to the surface wet. The RC rig sampling systems are routinely cleaned to minimize the opportunity for contamination; drilling methods are focused on sample quality. The selection of RC drilling company, having a water drilling background enables far greater control on any water present in the system, ensuring wet samples were kept to a minimum. The Competent Person has referenced publicly sourced information through the report and considers that sampling was commensurate with industry standards current at the time of drilling and is appropriate for the indication of the presence of mineralisation.
Logging	 Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies. Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc.) photography. The total length and percentage of the relevant intersections logged. 	 Archer Materials Drill collar information, geological logs, and magnetic susceptibility readings were recorded in excel spreadsheets.
Sub- Sampling Techniques and Sample Preparation	 If core, whether cut or sawn and whether quarter, half or all cores taken. If non-core, whether riffled, tube sampled, rotary split, etc. and whether sampled wet or dry. For all sample types, the nature, quality, and appropriateness of the sample preparation technique. Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples. Measures taken to ensure that the sampling is representative of the in-situ material collected, including for instance 	 Archer Materials All RC samples are split using a riffle splitter mounted under the cyclone, RC samples are drilled dry. A 25% fraction of samples in the Bartel area returned to the surface wet. All samples were submitted for analyses Sample preparation at the ALS laboratory involves the original sample being dried at 80° for up to 24 hours and weighed on submission to laboratory. Crushing to nominal – 4 mm. Sample is split to less than 2 kg through linear splitter and excess retained. Sample splits are weighed at a frequency of 1/20 and entered

ASX RELEASE 19 January 2022

0

Criteria	JORC Code Explanation	Commentary
	results for field duplicate/second-half sampling.Whether sample sizes are appropriate to the grain size of the material being sampled.	 into the job results file. Pulverising is completed using LM2 mill to 90% passing –75 μm. The pulverised residue is shipped to ALS in Perth for gold and multi-element analyses Duplicate analysis has been completed and identified no issues with sampling representatively.
Quality of Assay Data and Laboratory Tests	 The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total. For geophysical tools, spectrometers, handheld XRF instruments, etc., the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc. Nature of quality control procedures adopted (e.g. standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (i.e. lack of bias) and precision have been established. 	 Archer Materials All samples were sent ALS laboratory in Adelaide for preparation and forwarded to Perth for gold and multi- element analyses. All samples are crushed using LM2 mill to -4 mm and pulverised to nominal 80% passing -75 µm. Gold is by fire assay, solvent extraction and AAS. A charge of 30 g nominal weight is used. Multi-element analyses were performed by ALS in Perth where; <u>Sample Decomposition:</u> was by HF-HNO₃-HClO₄ acid digestion, HCl leach (GEO-4A01) <u>Analytical Method:</u> using Inductively Coupled Plasma - Atomic Emission Spectroscopy (ICP - AES) Inductively Coupled Plasma - Mass Spectrometry (ICP-MS) Wet samples were speared from the
Verification of Sampling and Assaying	 The verification of significant intersections by either independent or alternative company personnel. The use of twinned holes. Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols. Discuss any adjustment to assay data. 	• Archer Materials historical report no details reported • Rare earth element analyses were originally reported in elemental form but have been converted to relevant oxide concentrations as in the industry standard • TREO = $La_2O_3 + CeO_2 + Pr_6O_{11} + Nd_2O_3$ $+ Sm_2O_3 + Eu_2O_3 + Gd_2O_3 + Tb_4O_7 +$ $Dy_2O_3 + Ho_2O_3 + Er_2O_3 + Tm_2O_3 +$ $Yb_2O_3 + Lu_2O_3 + Eu_2O_3 + Tb_4O_7 + Dy_2O_3$ $- CREO = Nd_2O_3 + Eu_2O_3 + Tb_4O_7 + Dy_2O_3$ $+ Y_2O_3$ • LREO = $La_2O_3 + CeO_2 + Pr_6O_{11} + Nd_2O_3$ $- LREO = La_2O_3 + CeO_2 + Pr_6O_{11} + Nd_2O_3$ • HREO = $Sm_2O_3 + Eu_2O_3 + Gd_2O_3 +$ $Tb_4O_7 + Dy_2O_3 + Lu_2O_3 + Fr_2O_3 +$ $Tm_2O_3 + Yb_2O_3 + Lu_2O_3 + Y_2O_3$ • NdPr = Nd_2O_3 + Pr_6O_{11} • TREO-Ce = TREO - CeO_2 • % NdPr = NdPr/ TREO • %LREO = LREO/TREO

Criteria	JORC Code Explanation	Commentary
Location of Data Points	 Accuracy and quality of surveys used to locate drillholes (collar and downhole surveys), trenches, mine workings and other locations used in Mineral Resource estimation. Specification of the grid system used. Quality and adequacy of topographic control. 	 Archer Materials No information reported on drill hole location method or accuracy EPBIRC12_001 Datum used was GDA94 MGA Zone 53
Data Spacing and Distribution	 Data spacing for reporting of Exploration Results. Whether the data spacing, and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied. Whether sample compositing has been applied. 	 Archer Materials Ltd No sample compositing was undertaken.
Orientation of Data in Relation to Geological Structure	 Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type. If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material. 	 Archer Materials At Bartels there is too little drilling to determine the relationship between the drill hole orientation and intervals reported.
Sample Security	The measures taken to ensure sample security.	No information available from Archer Materials on sample security
Audits or Reviews	The results of any audits or reviews of sampling techniques and data.	None undertaken.

Section 2 Reporting of Exploration Results

(Criteria listed in the preceding section also apply to this section.)

Criteria	JORC Code Explanation	Commentary
Mineral Tenement	• Type, reference name/number,	Tenement status confirmed on SARIG. The taxet status are in grant of the dimensional status are in the status of the st
Tenement and Land Tenure Status	 location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings. The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area. 	The tenements are in good standing with no known impediments.
Exploration Done by Other Parties	 Acknowledgment and appraisal of exploration by other parties. 	 Relevant previous exploration has been undertaken by Shell Company of Australia Pty Ltd, Adelaide Exploration Pty Ltd and Archer Materials Ltd See body of report for details on previous exploration. See previous announcements by AXE (ASX) for the 8th March 2012, 28th May 2014 & 15th August 2010, for drill beloadet its
Geology	Deposit type, geological setting and style of mineralisation.	 August 2019, for drill hole details. The tenements are within the Gawler Craton, South Australia. iTech is exploring for porphyry Cu-Au, epithermal Au, kaolin and halloysite and REE deposits. This release refers to kaolin mineralisation and ion adsorption rare earth elements mineralisation related to lateritic weathering processes on basement rock of the Gawler Craton, in particular the Palaeoproterozoic Miltalie Gneiss and Warrow Quartzite. See body of the report for description of the geology in more detail.
Drillhole Information	 A summary of all information material to the understanding of the exploration results including a 	Refer to AXE announcement 28 th May 2014 (ASX;AXE) for drill hole details.
	tabulation of the following	HOLE ID EASTING NORTHING DEPTH Dip Azi
	information for all Material drill holes:	EPIRC12_001 638798 6284138 109 -70 340
	 Easting and northing of the drill hole collar 	EPIRC12_002 638914 6284182 76 -60 340 EPIRC12_003 638295 6283663 105 -60 330
	 Elevation or RL (Reduced 	EPIRC13_001 638928 6284163 104 -60 340
	Level – elevation above sea level in metres) of the drill hole	EPIRC13_002 638785 6284153 54 -60 160
	collar	EPIRC13_003 638920 6284209 30 -60 160
	 Dip and azimuth of the hole Downhole length and 	EPIRC14_001 638906 6284225 73 -60 340

Criteria	JORC Code Explanation		Co	ommenta	iry		
	interception depth	EPIRC14_002	638789	6284157	66	-60	340
	– Hole length						
	• If the exclusion of this information						
	is justified on the basis that the						
	information is not Material and						
	this exclusion does not detract						
	from the understanding of the						
	report, the Competent Person						
	should clearly explain why this is						
Data	the case.	Tesh M				(
Data	 In reporting Exploration Results, weighting everaging techniques 	 iTech Mi analysis 		s were ag			сэ
Aggregation Methods	weighting averaging techniques, maximum and/or minimum grade			00ppm T			
Methous	truncations (e.g., cutting of high	limit app					
	grades) and cut-off grades are						
	usually Material and should be						
	stated.						
	Where aggregate intercepts						
	incorporate short lengths of high-						
	grade results and longer lengths of						
	low-grade results, the procedure						
	used for such aggregation should						
	be stated and some typical examples of such aggregations						
	should be shown in detail.						
	• The assumptions used for any						
	reporting of metal equivalent						
	values should be clearly stated.						
Relationship	These relationships are	At Barte					
Between	particularly important in the			lationship			drill
Mineralisation	reporting of Exploration Results.	hole orie	ntation a	and interv	als rep	orted.	
Widths and	• If the geometry of the						
Intercept	mineralisation with respect to the						
Lengths	drill hole angle is known, its nature						
	should be reported.If it is not known and only the						
	downhole lengths are reported,						
	there should be a clear statement						
	to this effect (e.g., 'downhole						
	length, true width not known').						
Diagrams	Appropriate maps and sections	See prev					
	(with scales) and tabulations of			12, 28 th N			
	intercepts should be included for	August 2	2019 and	diagram	s in this	s docui	nent.
	any significant discovery being						
	reported. These should include,						
	but not be limited to a plan view of drill hole collar locations and						
	appropriate sectional views.						
Balanced	 Where comprehensive reporting of 	Detectio	n limits a	are consid	lered a	ppropr	iate
Reporting	all Exploration Results is not			ineralisat		· • P I	~
	practicable, representative	All other	relevant	t data has	been i		
	reporting of both low and high	The repo	orting is o	considere	d to be	balan	ced.

Criteria	JORC Code Explanation	Commentary
	grades and/or widths should be practiced to avoid misleading reporting of Exploration Results.	
Other Substantive Exploration Data	 Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances. 	 The Project area has been subject of significant exploration for base metals, graphite and gold. See body of report for details
Further Work	 The nature and scale of planned further work (e.g., tests for lateral extensions or depth extensions or large-scale step-out drilling). Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive. 	Further exploration sampling geochemistry and drilling required at all prosects